166 Materials Science
Collections
Materials Science by LibreTexts (CC BY-NC-SA).
Materials science is the design and discovery of new materials. Materials scientists emphasize understanding how the processing of a material influences its properties and performance.
Courses
Applied Statics and Strengths of Materials by Skills Commons (CC BY).
A hybrid course providing an algebra-based investigation of concepts in statics and strengths of materials. Topics include a study of fundamental mechanical properties of materials, single planar forces, properties of sections, and two-dimensional free body, shear, and bending moment diagrams.
Engineering Materials by Skills Commons (CC BY).
This course cartridge contains material for Engineering Materials which investigates the physical and mechanical properties of engineering materials used within industry. This course will also include the study of ferrous and nonferrous metals, polymers (plastics), woods, ceramics, composites, and other advanced materials.
Fundamentals of Materials Science by Prof. Darrell Irvine and Prof. Nicola Marzari (CC BY-NC-SA).
This course focuses on the fundamentals of structure, energetics, and bonding that underpin materials science. It is the introductory lecture class for students in Materials Science and Engineering. Topics include: an introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to atomistic and molecular models of materials; the role of electronic bonding in determining the energy, structure, and stability of materials; quantum mechanical descriptions of interacting electrons and atoms; materials phenomena, such as heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism; symmetry properties of molecules and solids; structure of complex, disordered, and amorphous materials; tensors and constraints on physical properties imposed by symmetry; and determination of structure through diffraction. Real-world applications include engineered alloys, electronic and magnetic materials, ionic and network solids, polymers, and biomaterials.
Introduction to Polymers by the Open University (CC BY-NC-SA).
This course examines the use of polymers and demonstrates how their properties are controlled by their molecular structure. Students will learn how this structure determines which polymer to use for a particular product. The course also explores the manufacturing techniques used and how the use of polymerisation can be used to control the structure of polymers.
Materials in Today’s World by Ron Redwing (CC BY-NC-SA).
A course that demonstrates how and why certain materials are selected for different applications, and how processing, structure, properties, and performance of materials are intrinsically linked to each other. This course introduces students, at a level accessible for a non-science student, to the basic science and technology of materials and how that knowledge can be used to understand modern materials and leads to the development of new materials.
Materials of Engineering by Chart, John and Kalla, Devi (CC BY).
This Materials of Engineering course is a combination lecture/laboratory course deals with basic properties of metals and non-metals, including the properties and behavior that govern their selection and design. Materials covered include ferrous and non-ferrous metals, composites, plastics, ceramics, glass, wood, rubber and adhesives.
Mechanical Behavior of Plastics by David Roylance (CC BY-NC-SA).
This course is aimed at presenting the concepts underlying the response of polymeric materials to applied loads. These will include both the molecular mechanisms involved and the mathematical description of the relevant continuum mechanics. It is dominantly an “engineering” subject, but with an atomistic flavor. It covers the influence of processing and structure on mechanical properties of synthetic and natural polymers: Hookean and entropic elastic deformation, linear viscoelasticity, composite materials and laminates, yield and fracture.
Mechanics & Materials by Carol Livermore, Henrik Schmidt, James H. Williams, Simona Socrate (CC BY-NC-SA).
This course provides an introduction to the mechanics of solids with applications to science and engineering. They emphasize the three essential features of all mechanics analyses, namely: (a) the geometry of the motion and/or deformation of the structure, and conditions of geometric fit, (b) the forces on and within structures and assemblages; and (c) the physical aspects of the structural system (including material properties) which quantify relations between the forces and motions/deformation.
Mechanics of Materials by David Roylance (CC BY-NC-SA).
Overview of mechanical properties of ceramics, metals, and polymers, emphasizing the role of processing and microstructure in controlling these properties. Basic topics in mechanics of materials including: continuum stress and strain, truss forces, torsion of a circular shaft and beam bending. Design of engineering structures from a materials point of view.
Polymer Engineering by Skills Commons (CC BY-NC-SA).
This course offers and overview of engineering analysis and design techniques for synthetic polymers. Treatment of materials properties selection, mechanical characterization, and processing in design of load-bearing and environment-compatible structures are covered.
Practical Metallurgy by Skills Commons (CC BY).
This course offers a study of metallurgical terms and definitions in an effort to understand both the behavior of metals and their service to industry. Characteristics during heating, cooling, shaping, forming, and the stresses related to their mechanical properties are covered. The theory behind the alloys, heat treatment processes, and the impact they have on strength, toughness, hardness, elasticity, ductility, malleability, wear resistance and fatigue resistances is investigated.
Solid Mechanics by Louis Bucciarelli (CC BY-NC-SA).
This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods.
Strength of Materials by Skills Commons (CC BY).
This course serves as an extension of Statics and includes the study of mechanical properties of materials and their limitations in engineering design by the study or stresses, strains, torsion forces, shear forces, and deflections placed upon these materials.
Journals
Oxford Open Materials Science by Editor-in-Chief Robert Vajtai (CC BY).
Publishes high-impact, novel research and reviews across the spectrum of the materials sciences and materials engineering encompassing theoretical/computational modelling, characteristic studies, synthesis, design, and application.
Textbooks
Applied Strength of Materials for Engineering Technology [PDF] by Barry Dupen (CC BY-SA).
This algebra-based text is designed specifically for Engineering Technology students, using both SI and US Customary units. All example problems are fully worked out with unit conversions. Unlike most textbooks, this one is updated each semester using student comments, with an average of 80 changes per edition.
Materials Science and Engineering by Joshua P. Steimel. (CC BY-NC-ND)
This text serves to provide a brief overview of some of the myriad of topics available for study in the field of Materials Science. This is by no means a comprehensive compilation of Materials Science and Engineering topics but is instead meant as an introduction to the topic for entry-level undergraduates who want to pursue a career studying materials.
Strength of Materials Supplement for Power Engineering by Alex Podut (CC BY)
This work complements the Applied Strength of Materials for Engineering Technology by Barry Dupen and is used in teaching Strength of Materials to Power Engineering students at the British Columbia Institute of Technology.
Videos
Anthony Kelly: Composite Materials and Carbon Fibre by Anthony Kelly (CC BY) .
Anthony Kelly introduces the history and science of carbon fibre and other composite materials.
How Cold Is Cold: Examining the Properties of Materials at Lower Temperatures by Rick McMaster (CC BY-NC-SA).
This video examines the properties of materials under low temperature conditions. The video consists of a series of fascinating demonstrations with liquid nitrogen, which boils at 77K (−196°C; −321°F).
Polymers and polymeric materials polymers with special properties by Ema Žagar (CC BY-NC-ND).
A video lecture on polymers and polymeric materials polymers with special properties.
Strength of Materials by various (CC BY-NC).
A collection of videos and simulations on the strength of materials.
Websites
Supplemental Modules (Materials Science) by LibreTexts (CC BY-NC-SA).
A collection of modules on different topics in Materials Science.